A NEW ONE-STEP SYNTHESIS OF B-CARCOLINES.

Atta-ur-Rahman^{*}and N. Waheed, HEJ Fostgraduate Institute of Chemistry, University of Karachi, Karachi-32,Fakistan.

* * * * * * * *

We have previously reported new methods for the reduction of amides to amines^{1,2}, α -functionalization of amides and imides³, conversion of tertiary amides to aldehydes via Vilsmeier complexes⁴, reduction of imides to seco-amide alcohols with NaBH₄⁵ and a novel synthesis of β -carbolines⁶. Since the earlier synthesis of β -carbolines⁶ proceeded in moderate yield, particularly with 5-membered imides, this has led us to investigate the possibility of developing alternative new methods for the cyclization of N-imidotryptamines to the corresponding β -carbolines. We feport here a novel one-step synthesis of β -carbolines by the reductive cyclization of indolic imides with NaEH₄ -HCl in excellent yields.

N-Succinimidotryptamine(1)on treatment with excess of NaBH₄ and 2N HCl in ethanol at 0° C, afforded the cyclized β -carboline lactam (2)in 98% yield after five hours. When the same reaction was repeated at 24°C, the amide alcohol(3)was obtained in 75% yield and the cyclized β -carboline lactam(2)was formed as a minor product in 15% yields.

N-Glutarimidotryptamine(4) on identical treatment with NaBH₄ and 2N HCl in ethanol at 0-6°C afforded the cyclized β -carboline lactam (5) in 97% yield after one hour. At higher temperatures, (24°C), the amide alcohol(6) was obtained in 78% yield and the cyclized lactam(5) in 18% yield.

N-Phthalimidotryptamine(7)when similarly treated with NaBH₄ and 2N HCl in ethanol at 24°C and 0°C afforded the β -carboline lactam(8) as the faster moving compound in 90% and 75% yields respectively. The hydroxy lactam(9),m.p. 166°-168°C, was obtained in yields of 5% and 25% at 24°C and 0°C respectively in the reaction, and it cyclized quantitatively to the β -carboline(8) on treatment with conc. HCl at 34°C.

Wenkert⁷ and others^{8,9}have previously reported difficulties in synthesising β -carboline lactams from N-imidotryptamines under Bischler-Napieralski conditions. The above procedure represents a new high yield method for the synthesis of β -carbolines from N-imidotryptamines.

References:

- Atta-ur-Rahman, A. Basha, N. Waheed & S. Ahmad, <u>Tetrahedron Letters</u>, <u>3</u>, 219 (1976).
- 2. A. Basha and Atta-ur-kahman, Experientia, 33, 101 (1977).
- 3. Atta-ur-Rahman, A. Basha and V.U.Ahmad, Experientia, 32, 1491 (1976).
- 4. Atta-ur-Rahman and A. Basha, J.Chem.Soc.Chemical.Communication, 594(1976)
- 5. Atta-ur-Rahman and N. Waheed, Z. Naturforsch., 31b, 287 (1976).
- 6. Atta-ur-Rahman and N. Waheed, Tetrahedron Letters, 47, 4101 (1977)
- 7. E. Wenkert, S. Garrat and K.G. Dave, Canad. J. Chem., 42, 489 (1964).
- 8. Atta-ur-Rahman, J.Chem. Soc., 736 (1972).
- J.P. Kutney, N-abdurahman, C. Gletsos, P.Le Quesne, E. Piers & I.Vlattas, <u>J.Amer.Chem.Soc.</u>, <u>92</u>, 1727 (1970)

(Received in UK 8 February 1979)